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RESONANCES IN MULTIFREQUENCY OSCH.LATIONS

A
A. M. MOLCANOV

It is shown that resonance of general position is reduced by change of variables, by the introdyc-
tion of resonance phases, to the special case of a single-frequency resonance when the frequency
passes through zero. The concepts introduced are illustrated by the example of resonances in the
solar system.

1. We shall study multifrequency oscillations of the form

al
= eF (1, @, e),

28— o)+ eQ(I, 7, 5). 0

Here ¢ is a small parameter; [ = (11, e, Ik) are slowly varying variables, and ¢ = (¢u1, cer, VSI) are
rapidly varying (phase variables). The right-hand sides are smooth functions of their arguments and
periodic with the period 27 for each phase.

The separation of the variables into rapidly and slowly varying variables has an asymprotic sense
(as ¢ — 0). If we set ¢= 0, the slowly varying variables become the first integrals of the system
1= 10. The rapidly varying variables remain, in general, variables even when ¢= 0. However, some
combinations of phases (we shall call them resonance phases) can become constants when ¢= 0. For

a more precise description of the situation we shall introduce some definitions.

Definition 1. The surface in space I of slowly varying variables defined by the equality
(n, ©) = nmoi(I) + ...+ mo(I) =0, @

where n= (nl, e ’nl) is an integral vector is called a resonance surface and n is a resonance vector.

Definition 2. An integral linear combination of phases
Y= nmQ + ...+ ny 3)
is called a resonance phase of a given resonance.

Definition 3. The number s of linearly independent resonance relations which are satisfied by
point [ is called the index of complexity of point I (or the complexity of state I).

2. In space | of slowly varying variables, the overwhelming majority of points, a set of full
measure, are points with the index zero not lying on any of the resonance surfaces (2). If we make
use of the terminology of probability theory, as is often done, we can say that the *probability of a
point having the index 1 is equal to zero.” It is essential, however, to take into consideration the slow
motion, whose one-dimensional trajectories must intersect resonance surfaces of index 1. Therefore,
from the standpoint of measure theory [1], it seems well to study resonances of index 1. As for

resonances of complexity 2, the **probability”’ of encountering such a point in a practical problem is
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equal to zero.
The result of analyzing the resonance relations that take place in the solar system is all the more
ggexpected and remarkable. Jumping ahead, let us here stress the main point. In all cases analyzed,

the complexity has the maximum possible value.

It is clear from the foregoing that this fact cannot be explained by randomicity. Another possible
explanation is significantly more satisfactory, namely that the total resonance of all subsystems in the
solar system is the inevitable result of long evolution.

3. The canonical form of a system of resonances. Henceforth, when studying phenomena taking

place in passing through a resonance, it is very important to be able to introduce precisely the resonance

phases of the given system of resonances as independent phase variables. The change of phase vari-

ables

Y=A4¢, ¢=5BY (4)

should preserve the form of system (1), that is, its periodicity in respect to phases. This means that
poth matrices 4 and B should be integral.
The following theorem plays an important role in this investigation.

Theorem of biorthogonalization. If the integral vectors ny, «++, ng are linearly independent, then

there exists an integral biorthogonal system a prresags by, b such that the vectors L PPREREE N

1’
are obtained from the vectors aj, +,ag by the integral triangular trans formation

n = T“a(,

ny = Tnay + T2y, (5)

ng = T5131 + Tsza2 "l"‘ - + T,ssﬂs.
The theorem is proved by a method analogous to the well-known Lagrange method of orthogonali-
zation [2], but with modifications due to the integral nature of the problem. The main modification is

the replacement of an orthonormal system by a biorthonormal one [2]. A lemma which readily follows

from the Euclidean algorithm is used in the proof [3].
Lemma. For any integral vector a we find an integral vector b such that their scalar product

d=(a, b) is equal to the largest common divisor of the components of vector a.
The theorem of the reduction of an arbitrary system of resonances
— —
(nh (1)) :01"-’ (l’ls, (D) =0 (6)

to the canonical form

oi(I) =0,...,0:(]) =0 @

follows almost directly from the theorem formulated above. For the proof, we must supplement the
fesonance vectors my, +++,ng in an arbitrary manner up to the integral basis ny, -+, 0,
85415 * ++»n;and biorthogonalize this basis. The vectors a;, arranged in rows form the integral

Square matrix 4 and the columns b, the matrix B, biorthogonality meaning simply that
AB = E. (®

Therefore matrices A and B can be used to construct the replacement of variables in (4). In
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this case, the first s phases will automatically be resonance phases due to the triangulatiry of the
transformation (5).

4. Resonances and the solar system. From the standpoint of oscillation theory, any Planetary
system is a set of weakly coupled systems, the number of phases being equal to the number of Plagers,
The solar system contains at least four such subsystems, namely the nine planets, four satellites of
Jupiter, eight satellites of Saturn, and the five satellites of Uranus.

Since resonance relations correspond to the undisturbed problem (e=0), in computations inVOl‘fmg
a practical problem it is necessary to coasider the vector nas a resonance vector if its scalar Producy
with the frequency vector @, even though not zero, is of the order of ¢ (n, &) ~ ¢ For the solar
system, where ¢~ 1073 (the ratio of the mass of the planets to the mass of the sun) , this yields a
value of the scalar product of several thousandths. The following expectation is justified: the pripgj-
pal resonance of the solar system is the resonance of 5:2 for the frequencies of Jupiter and Saturn; j¢
has an accuracy of about %% (0.0067). Of the 22 resonances cited below, only three are less accurate,
even the very “‘worst’’ of them, the 1:2 resonance for Neptune and Uranus, nevertheless has an accu-
racy of 1.5%. In the table of frequencies [4], the frequency of the most massive body in each System

is taken as unity.

Table of Frequencies.

Planets Satellites of Satellites of
Jupiter Saturn

Mercury  49.22 Io 4.044 Mimas 16.918
Venus 19.29 Europa 2.015 Enceladus 11.639
Earth 11.862 Ganymede 1.000 Tethys 8.448
Mars 6.306 Callistro 0.4288 Dione 5.826
Jupiter 1.000 Rhea 3.530
Satum 0.4027 Satellites of Titan 1.000
Uranus 0.14119 Uranus Hyperion 0.7494
Neptune 0.07197 lapetus 0.2010
Pluto 0.04750 Miranda 6.529

Ariel 3. 454

Umbriel 2.100

Titania 1.000

Oberon 0.6466

Table of Resonance Vectors

Planets Satellites of Saturn
(1 1 21 00 000 (1 0—2 00 0 0 0o
(=0—1 03 04 000) 00— 0 20 0 0 0
(0 0—12-—11-100) (0 0—1 02 1 0 2
(0 0 014-60-2000 (0 0 0-—12—1 0—1)
(0 0 00-25 000) (0 0 0 01-—2—2 0)
(0 0 g0-—10 700) (0 0 0 00 3—4 0
(0 0 00 00-—120) O 0 0 00—t 0 5
(0 0 00 00—103)
Satellites of Jupiter Satellites of Uranus
(1 —2 00) (—11 1 10
(0 1 —20) ( 01 -1 —21)
0—3 07 ( 00—2 15)

( 00 1 —43)

Ao analysis of the tables of resonances leads to the following conclusions:

1. The rule of maximum resonance is applicable to all systems of satellites and to the system of

planets, namely the number of resonance relations is equal to one less than the number of phases.
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2. Systems with a small number of members are quite homogeneous; the resonance relations 1aclude
the majority of participants.

3. The system of planets and the satellites of Saturn (consisting of 9 and 8 members, respectively)
show a clear tendency to creating a heterogeneous structure.

Indeed, the system of planets naturally divides into three types: Mercury—Venus—Earth—Mars,
]upiter—Satum, and Uranus—Neptune—Pluto. There are unifying resonances within each group: the
first, second, and third for the Earth group, the fifth for the Jupiter group, and the seventh and eighth
for the Uranus group, the subordinate role of the group of Earth-like planets relative to the other groups
being quite obvious. The fourth and sixth resonances which unify three coalitions into a single solar
system play the principal role.

The system of satellites of Saturn exhibits a similar structure, but the coalitions are more nearly
equal. The coalitions are as follows: Mimas—Tethys, Enceladus—Dione, Rhea —Titan—Hyperion—
Iapetus. It is easy to find “*local”” and ‘‘general’’ resonances in the table.

5. The law of planetary distances. We shall note an important property of states with a maximum
index of complexity. States with a maximum index of complexity are given uniquely by tables of
resonances. Indeed, in this case, all frequencies can be expressed through one frequency which re-

mains free. A change in the free frequency simply corresponds to a change in the scale of the system.

For planetary systems, this really means that the formulation of the question of the law of plane-
tary distances [5] is unfortunate since simple integral relations are obtained not for the distances but
for the frequencies through which the distances are uniquely determined. Moreover, the law of planetary
distances, if it is applicable, is only for planets, while the rule of maximum complexity of resonance

is equally applicable to all analyzed cases.

It is impossible to refrain from commenting that the integrality which is usually associated with
quantum physics is probably the common property of sufficiently old systems. It is simply that quantum
systems are always old for us since their time scale is usually negligible and we ‘‘find”’ them already
passed through their evolution. It is possible that this is precisely why integrality has drawn attention
to itself first of all in the physics of elementary particles and has even determined the name quantum.

The basic idea can be formulated briefly as follows: the resonance of a system is a consequence
(and criterion) of its evolutionary maturity.

This viewpoint finds a curious substantiation in the fact usually noted as an amusing happenstance.
Itis known [6] that motion in an arbitrary centrally symmetric field has, generally speaking, two
frequencies, the angular and radial frequencies not being connected with each other in any way. How-
ever, in the case of a Newtonian potential, we do have an identical (for all values of momentum and
energy) resonance 1:1 of these frequencies. Consequently, the motion of a single planet satisfies
the mule of maximum resonance. This fact is very satisfactory from an evolutionary standpoint since
the Newtonian potential corresponds to interactions with the largest time scales, the electrical and
gravitational.

Still another resonance potential is known, namely the potential of a harmonic oscillator with a

1:2 resonance. It would be interesting to prove that other identical resonance potentials do not exist.
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